COURSE TITLE:	Foundations of Energy		
UNIT TITLE:	Energy Policies		

SECTION 1: General Information and Overview

Grade Level: 9-12

Suggested Number of Lessons: 5-6

Suggested Time to Complete Unit: 1 week

Unit Overview: Discuss present energy strategies for Kentucky and relate them to the US

Energy Policy. Look at global issues economically, politically, and

environmentally.

SECTION 2: Essential Questions

1. What are the available energy sources for the generation of electricity that offers to a balance energy portfolio?

- 2. How do the Kentucky Energy Strategies compare to the US Energy Policy and global energy use?
- 3. Why are the Kentucky Energy Strategies important to the economy of Kentucky?

SECTION 3: Major Focus

Technical Content	Learner Activities	0 0 1	
CTE	(Enabling Knowledge	Core Content	Academic
Program of Studies	and Skills/Processes)	For Assessment	Expectations
Construction	Using the provided PDF	SC-HS-4.6.1	2.1 Students understand
Technology KOSSA	files in the <i>Policies in</i>	Students will:	scientific ways of
Standard AD-002:	Kentucky unit, research	 explain the relationships and 	thinking and working
Demonstrate the ability	current and new policies	connections between matter,	and use those methods
to learn new processes	in the energy industry	energy, living systems and	to solve real-life
and steps.	for understandings of	the physical environment;	problems.
	current energy trends	 Give examples of 	
2.1 Assess the impact	and the impact on our	conservation of matter and	
of various current and	nation's energy portfolio	energy.	
new technologies on	and economy on the	As matter and energy flow	
the economy.	state and national level.	through different organizational	
		levels (e.g., cells, organs,	
		organisms, communities) and	
		between living systems and the	
		physical environment, chemical	
		elements are recombined in	
		different ways. Each	

	1	4 . 4 .	
		recombination results in storage	
		and dissipation of energy into	
		the environment as heat. Matter	
		and energy are conserved in each	
		change. DOK 3	
Construction	Using the resource files	SC-HS-4.6.4	2.2 Students identify,
Technology KOSSA	on the CD, develop a	Students will:	analyze, and use
Standard AD-003:	presentation on the "new	 describe the components and 	patterns such as cycles
Implement new	or emerging	reservoirs involved in	and trends to
processes given oral	technologies" from	biogeochemical cycles	understand past and
instructions.	research regarding	(water, nitrogen, carbon	present events and
	energy.	dioxide and oxygen);	predict possible future
		• Explain the movement of	events.
2.3Engaging in	That information will be	matter and energy in	
meaningful hands-on,	assessed in the activity,	biogeochemical cycles and	
minds-on conceptual	Energy Source Expo.	related phenomena.	
based activities in the		The total energy of the universe	
area of energy		is constant. Energy can change	
technologies.		forms and/or be transferred in	
		many ways, but it can neither be	
		created nor destroyed.	
		Movement of matter between	
		reservoirs is driven by earth's	
		internal and external sources of	
		energy. These movements are	
		often accompanied by a change	
		in physical and chemical	
		properties of the matter. Carbon,	
		for example, occurs in carbonate	
		rocks such as limestone, in the	
		atmosphere as carbon dioxide	
		gas, in water as dissolved carbon	
		dioxide and in all organisms as	
		complex molecules that control	
Comptum -4:	Hoing the Dealer	the chemistry of life. DOK 3	2.4 Students was 41
Construction Technology KOSSA	Using the Backgrounder resource CD and the	SC-HS-4.67 Students will:	2.4 Students use the
Technology KOSSA Standard EA-005:			concept of scale and scientific models to
	activity <u>Current Energy</u>	• explain real world	explain the
Display initiative.	Affair, explore energy around the world,	applications of energy using	_
5.4 Students will	implement student	information/data;	organization and functioning of living
investigate with teacher	energy teams to develop	• Evaluate explanations of	and nonliving things
guidance the role of		mechanical systems using	and predict other
technology in the	energy management guidelines, review	current scientific knowledge	characteristics that
future.	perspectives, laws and	about energy.	might be observed.
ruture.	investigate and	The universe becomes less	might of observed.
		orderly and less organized over	
	interpret findings.	time. Thus, the overall effect is	

		that the energy is spread out uniformly. For example, in the operation of mechanical systems, the useful energy output is always less than the energy input; the difference appears as heat. DOK 2	
Construction Technology KOSSA Standard AC-002: Students will identify methods of planning that will save costs on time and materials.	Students identify and build an energy resource expo board for renewable and non-renewable energy sources.	SC-08-4.6.2 Students will: Describe or explain energy transfer and energy conservation; Evaluate alternative solutions to energy problems. Energy can be transferred in many ways, but it can neither be created nor destroyed. DOK 3 SC-HS-4.6.8 Students will: describe the connection between the functioning of the Earth system and its sources of energy (internal and external); predict the consequences of changes to any component of the Earth system. Earth systems have sources of energy that are internal and external to the Earth. The Sun is the major external source of energy. Two primary sources of internal energy are the decay of radioactive isotopes and the gravitational energy from Earth's original formation. DOK 3	2.6 Students understand how living and nonliving things change over time and the factors that influence the changes.

SECTION 4: Culminating Project with Scoring Guide

Students working in pairs will create and present an expo board over Kentucky Energy Strategies and how they relate to US energy policy, global energy uses, and the economy of Kentucky.

FOUNDATIONS OF ENERGY—ENERGY POLICIES

SCORING GUIDE:

CATEGORY	4	3	2	1
CONTENT	EXTENSIVE- CONTENT BEYOND WHAT IS TAUGHT IN CLASS	GOOD- EXPLANANTION OF CONCEPTS COVERED IN CLASS	BASIC – WHAT HAS ALREADY BEEN COVERED IN CLASS	LIMITED- DOESN'T COVER MATERIAL AS WELL AS DONE IN CLASS
PRESENTATION	EXCELLENT- FLOWS WELL, AUDIENCE VERY ATTENTIVE- WELL REHEARSED	GOOD – FLOWS WELL PARTICIPANTS KNOW MATERIAL WELL	BASIC – FLOWS UNEVENLY MAY HAVE SOME READING OF NOTES	LIMITED- PARTICIPANTS READ FROM NOTES
INTEREST	EXTENSIVE – PARTICIPANTS MAKE MANY EXTENSIONS AND EXPLANATIONS	APPROPRIATE – ENCOURAGES QUESTIONS AND COMMENTS	BASIC – CAN FIELD SOME QUESTIONS	LIMITED – GLAD TO BE THROUGH WITH THE PRESENTATION

SECTION 5: Assessment and Enabling Skills and Processes

As	ssessment:	Students will plan, conduct and implement a school Energy Team and district Energy Team to perform building audits.	

SECTION 6: Support Materials (i.e., Resources, Technology, and Equipment)

A. Resources	NEED Secondary INFO book	
B. Technology	Computer lab	
C. Websites (samples of many	US Department of Energy, http://www.energy.gov/	
available)	Energy Information Administration, www.eia.gov	
	Kentucky Department of Energy, http://www.energy.gov/kentucky.htm	
D. Equipment	Craft supplies and 3-sided display boards	